
3D Fabrication with Universal Building Blocks and Pyramidal Shells

XUELIN CHEN∗, Shandong University
HONGHUA LI∗, Alibaba AI Labs
CHI-WING FU, The Chinese University of Hong Kong
HAO ZHANG, Simon Fraser University
DANIEL COHEN-OR, Tel Aviv University
BAOQUAN CHEN, Peking University and Shandong University

Fig. 1. We introduce a method for cost-efficient 3D fabrication by decomposing a 3D shape into (i) an internal core, to be assembled from universal building
blocks, and (ii) the residual, to be further decomposed into approximately pyramidal shells for efficient 3D printing. From left to right, the four types of blocks,
internal cores assembled from the blocks, 3D-printed pyramidal shells forming the residual, and the final object assembly. The two 3D objects clearly have
very different shapes, yet their internal cores can be assembled from exactly the same set of universal building blocks.

We introduce a computational solution for cost-efficient 3D fabrication using

universal building blocks. Our key idea is to employ a set of universal blocks,

which can be massively prefabricated at a low cost, to quickly assemble and

constitute a significant internal core of the target object, so that only the

residual volume need to be 3D printed online. We further improve the fabri-

cation efficiency by decomposing the residual volume into a small number

of printing-friendly pyramidal pieces. Computationally, we face a coupled de-
composition problem: decomposing the input object into an internal core and

residual, and decomposing the residual, to fulfill a combination of objectives

∗
Both authors contributed equally to the paper

Authors’ addresses: Xuelin Chen, Shandong University; Honghua Li, Alibaba AI Labs;

Chi-Wing Fu, The Chinese University of Hong Kong; Hao Zhang, Simon Fraser Uni-

versity; Daniel Cohen-Or, Tel Aviv University; Baoquan Chen, Peking University and

Shandong University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/11-ART189 $15.00

https://doi.org/10.1145/3272127.3275033

for efficient 3D fabrication. To this end, we formulate an optimization that

jointly minimizes the residual volume, the number of pyramidal residual

pieces, and the amount of support waste when printing the residual pieces.

To solve the optimization in a tractable manner, we start with a maximal

internal core and iteratively refine it with local cuts to minimize the cost

function. Moreover, to efficiently explore the large search space, we resort

to cost estimates aided by pre-computation and avoid the need to explicitly

construct pyramidal decompositions for each solution candidate. Results

show that our method can iteratively reduce the estimated printing time

and cost, as well as the support waste, and helps to save hours of fabrication

time and much material consumption.

CCS Concepts: • Computing methodologies→ Shape modeling;

Additional Key Words and Phrases: fabrication, building blocks, decomposi-

tion, 3D printing, cost efficiency

ACM Reference Format:
Xuelin Chen, Honghua Li, Chi-Wing Fu, Hao Zhang, Daniel Cohen-Or,

and Baoquan Chen. 2018. 3D Fabrication with Universal Building Blocks

and Pyramidal Shells. ACM Trans. Graph. 37, 6, Article 189 (November 2018),

15 pages. https://doi.org/10.1145/3272127.3275033

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275033
https://doi.org/10.1145/3272127.3275033

189:2 • Chen, X. et al

1 INTRODUCTION
Recent advances in 3D printing technologies and their growing

application potential have attracted much interest in the computer

graphics community. Using this additive manufacturing technique,

one can build a target object layer by layer, enabling the production

of 3D objects of almost any shape. However, 3D printing remains

a highly time-consuming process with costly material consump-

tion [Bermano et al. 2017], especially when the entire volume of a

large object, and possibly support waste, both need to be printed.

One major approach to cost-efficient 3D fabrication is to print

only a portion of the target object; the rest is either left as hollowed

in the object’s interior [Lu et al. 2014; Stava et al. 2012; Wang et al.

2013; Zhang et al. 2015] or built with a different material. This

latter approach can directly overcome the intrinsic limitations of 3D

printing and open the door to innovative fabrication alternatives

for cost reduction [Mueller et al. 2014; Song et al. 2016]. However,

to maximize the benefit of such approaches, one must face a multi-

objective optimization problem. On the one hand, the volume of the

3D printed portion and the associated support waste must both be

minimized. On the other hand, the resulting (relative) increase in

the remaining portion of the object must be well compensated by a

clever fabrication alternative and material selection.

In this paper, we introduce a novel approach for cost-efficient

3D fabrication, which complements 3D printing with a fabrication

alternative based on universal building blocks that can be massively
prefabricated. Specifically, we decompose the target 3D object into

an internal core that is assembled by the building blocks, while only

the remaining portion (referred to as the residual volume) is 3D
printed; see Figure 1. Considering the overall fabrication efficiency,

for both processing time and material consumption, our approach

hinges on two key criteria. First, the building blocks must be made

up of low-cost material, easy to assemble, and universal. Second, 3D

printing of the residual volume must be efficient. This is dictated by

the printing strategy and the shape of the internal core.

To cost-effectively 3D print the residual volume, we decompose

it into a small number of printing-friendly residual parts. To this end,
we target pyramidal shapes [Hu et al. 2014] for these parts. A pyra-

midal shape is a height field over a flat base and can be 3D printed

using an FDM printer without any support waste. Furthermore, to

reduce the number of residual parts, it is desirable for the internal

core to have a small number of flat surfaces, which can serve as the

flat bases of the pyramidal (residual) parts. This consideration is

correlated with our choice of the building blocks.

In general, besides universality, the building blocks should also be

tileable, so that they can be assembled into a wide range of 3D shapes

to serve as the internal core. In addition, the building blocks should

be geometrically simple to allow economical construction and easy

assembly, without compromising the printability of the residual.

With these criteria in mind, we choose four types of building blocks:

a cube and three sub-volumes of the cube whose faces are all parallel

to the principal axes or main diagonals of the cube; see Figure 1.

With cubes as the principal building blocks of the internal core, the

other pieces can help to fill the concavities around the cubes, further

reducing the residual volume while allowing flat surfaces of more

orientations to serve as the bases of the residual parts.

Fig. 2. A 2D illustration of our decomposition. From left to right, the input
shape is decomposed into an internal core (in light blue), which is to be
assembled from 2D versions of the building block set, and a residual shell
volume (in black), which is to be further decomposed into approximately
pyramidal pieces for online printing.

The core computational problem involves two decompositions:

(i) how to decompose the input object into an internal core and

the residual, and (ii) how to decompose the residual into pyramidal

shapes for 3D printing; see Figure 2. The main challenge is that

the two decompositions are coupled, meaning that we should not

consider them independently. Using the best geometric approxi-

mation of the input object as the internal core is ill-advised, since

the residual volume would be too thin with complex bases, thus

compromising its printability. Hence, we need to carefully trade-

off between minimizing the residual volume and maximizing the

printability of the residual parts.

We develop a computational approach by formulating the coupled

decomposition with an objective function accounting for the size of

the residual, residual part count, and amount of support waste. Since

the resulting optimization problem is highly non-linear and induces

a tremendous search space, we resort to a heuristic for efficiency.

Specifically, we initialize the solution with a maximal internal core,

and employ beam search to iteratively refine the internal core, with

local cuts aligned with the orientations of the building blocks to

minimize the objective function. Moreover, since it is overly costly

to evaluate the exact residual part count and amount of support

waste through an explicit pyramidal decomposition of the residual

for every single solution candidate, we develop efficient estimates

for these terms in the objective function to boost the performance.

Lastly, for the aesthetics of the results, we avoid cutting salient

regions over the object when decomposing the residual volume.

To the best of our knowledge, our method represents the first

computational framework for a hybrid, high-fidelity 3D fabrication

using universal building blocks. It only requires building blocks of a

few types (four per scale to be exact). These blocks are independent

of the shape of the target 3D objects and they can be massively pre-

manufactured using traditional techniques such as molding. Just as

importantly, our building blocks are universal and geometrically

simple, so we can quickly assemble them for a wide range of 3D

shapes, which are not necessarily convex or bulky. Figure 1 shows

an example of using the same block set to fabricate two drastically

different 3D objects. Also, by selecting and mixing blocks at suitable

scales, our method is effective for fabricating objects, large or small.

Quality-wise, the surfaces of the final 3D objects are reproduced to

printer precision. We demonstrate our method over a rich variety

of shapes and estimate the overall fabrication time and cost using

Cura [Ultimaker ltd. 2017] to compare its efficiency against conven-

tional 3D printing. Results show that our method saves hours of 3D

printing time and much material consumption, while taking only

minutes to compute for most tested objects; see Section 6.

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

3D Fabrication with Universal Building Blocks and Pyramidal Shells • 189:3

2 RELATED WORK
A key idea to improve onsite construction efficiency is the use of uni-

versal building blocks that are massively prefabricated [Wikipedia

2016]. The important characteristic is that the building blocks are not
customized to one specific construction. In this section, we mainly

focus on related works for cost-effective 3D printing.

Hollowing before printing. A typical strategy for cost-effective

3D printing is to hollow an object’s interior and custom-build an

internal structure to support the 3D-printed shell, e.g., by insert-

ing inner struts [Stava et al. 2012] or by constructing optimized

structures such as those involving skin-frames [Wang et al. 2013],

honeycomb-cells [Lu et al. 2014], or medial axis trees [Zhang et al.

2015]. Other methods optimize the interior void for other purposes,

e.g., to balance the printed object [Prévost et al. 2013] or to fulfill

prescribed buoyancy constraints [Wang and Whiting 2016]. An in-

teresting variation of the latter work is to use off-the-shelf metal

bolts or cement to fill parts of the interior volume. There is a slight

flavor of prefabrication, but the cheap material is only for filling a

given volume. Instead of carving out an internal volume to reduce

the filling during 3D printing, our method computes an internal core

to maximize the benefit of using universal building blocks, leading

to an entirely different optimization. Since the cost of 3D printing

grows cubically as the volume of the target object scales up, the

larger the object, the more cost saving is gained by substituting the

object interiors with prefabricated building blocks.

Decomposition. Another strategy for cost-effective fabrication is

to decompose an object into pieces that are more printing-friendly,

or can be packed into the printer volume and printed simultaneously

to save the overall fabrication cost [Chen et al. 2015; Vanek et al.

2014; Yao et al. 2015]. Early work by Luo et al. [2012] decomposes an

object, so that each piece can fit into the printer volume, size-wise.

Herholz et al. [2015] decompose the surface of a 3D object into

height field pieces, even allowing slight surface deformation for

assurance, so that the pieces can be made into molds. While height

field pieces are printing-friendly, their decomposition had a very

different goal from ours, in that there was no consideration of using

universal building blocks for the internal core.

Hu et al. [2014] decompose the solid volume of a given shape into

a small number of approximately pyramidal parts. Our optimiza-

tion problem also considers pyramidality, but it is only one of the

criteria, for printing the residual; the core optimization involves a

trade-off between the internal core and the residual. Moreover, our

optimization computes not just one pyramidal decomposition, it

must search over many pyramidal decompositions, each associated

with a candidate solution in the iterative refinement process.

Block approximation. Approximating 3D shapes using a set of

universal building blocks has been studied before, e.g., Legoliza-

tion [Luo et al. 2015]. For fabrication, some recent works have ex-

plored the possibility of mixing 3D printing (for high-fidelity object

parts) with block approximation (for lower-fidelity parts), where the

latter is realized by LEGO brick assemblies in faBrickation [Mueller

et al. 2014] or by 2D laser cutting [Beyer et al. 2015]. While faB-

rickation can speed up fabrication since assembling off-the-shelf

bricks is faster than 3D printing, the result produced still leaves

the low-fidelity boxy assemblies exposed — it does not reproduce

the input 3D object. Moreover, the decomposition into 3D-printed

parts and assembled parts in faBrickation [Mueller et al. 2014] was

achieved via manual effort. In contrast, our method reproduces the

input shape as is. More importantly, we develop a computational

method to iteratively modify and optimize the building block as-

sembly, as well as the decomposition of the residual shell, to reduce

the overall fabrication cost via a coupled decomposition.

CofiFab. Song et al. [2016] build a 3D assembly of laser-cut pan-

els to form an internal core inside a 3D-printed shell. While both

our work and CofiFab fabricate an object by decomposing it into

an internal core and a residual, there are several significant differ-

ences. First, CofiFab is not built from universal building blocks. The

laser-cut panels, which form the internal core, are custom-made
specifically for each target object. In our work, the internal core

is assembled from universal pre-manufactured blocks regardless

of the target shape. Second, CofiFab works most effectively for 3D

objects whose interior can be approximated using a small number

of convex polyhedra. Its cost increases as the object becomes more

geometrically complex, as we show in Section 6. In our work, the

building blocks are simple shapes whose assembly can flexibly adapt

to various inputs regardless of their geometric complexity.

Computationally, CofiFab amounts to an approximate convex

decomposition of an object’s interior that minimizes the residual

volumes. The residuals are not optimized for 3D printing. In our

work, we pose and solve a novel problem of optimizing both the

interior-residual split and pyramidal decomposition of the residual.

Even though our problem is technically more challenging, our solu-

tion is efficient and leads to a reduction in the overall fabrication

cost, while incurring far less support waste; see Table 2. Lastly, Cofi-

Fab is effective for fabricating larger objects due to the constraints

pertaining to the size and thickness of the laser-cut panels to ac-

commodate the mortise-and-tenon and halved joints. Typically, the

smallest fabricated object presented in [Song et al. 2016] is ∼20cm

high with 3mm plastic laser-cut panels. Our work can be naturally

used for fabricating objects of varying sizes (large or small) and

shapes by incorporating universal blocks in compatible scales.

Space tiling. This work is also related to tiling. Besides plane fill-

ing on a flat Euclidean plane, Eigensatz et al. [2010], Fu et al. [2010],

and Singh and Schaefer [2010] independently developed methods

to find a small set of shapes whose instances can be prefabricated

and assembled to form a tiled surface that approximates a given

input surface. Later, Zimmer et al. [2014] developed local mesh op-

erators to iteratively refine a surface approximation of an input

mesh covered by a set of simple 2D shapes. Our problem contains

a tiling component for the internal core, which is related to solid

tiling with space-filling polyhedra [Weisstein 2016]. However, the

target volume is unknown in our case, and the tiling is a result of

an optimization that considers the printability of the residual.

Volume approximation. Our method involves the construction

of a “filling” (interior) volume inside a given 3D object, rather than

a bounding (exterior) volume. Bounding volume approximation

is a classical problem in computer graphics, especially collision

detection [Ericson 2004]. Compared to previous works, one main

distinction from our work is that we do not seek the best geometric

approximation of the input object. Our approximation problem is

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

189:4 • Chen, X. et al

…

(b) maximal internal core(a) cuboid fitting (d) iteratively refine the internal core by local cuts(c) precompute waste (e) final decomposition

building
blocks in 2D

Δw
internal

core

residual
parts

Fig. 3. Overview of our algorithm. It decomposes an input object shape (black contour in (a)) into (i) an internal core, which is an assembly of building blocks
(b), and (ii) a residual, which is composed of approximately pyramidal parts, while reproducing the target object; see (e).

also novel in that it aims for a maximal internal volume while con-

sidering the decomposition and printability of the residual. While

our goal here shares a similar spirit as [Jacobson 2017], we target to

find a maximal internal core that composes of universal building

blocks instead of being a replica of the given object itself. In terms

of choices for the filling volume, k-DOPs, whose faces only take on

one of k possible orientations, naturally fit the characteristics of our

internal core as the assembly from our building blocks also has a

limited number of face orientations. However, k-DOPs are convex
but our internal cores need not be.

3 PROBLEM SETUP AND CHALLENGES
The input to our method is a user-provided 3D model in the form

of a closed polygonal mesh. The output has two components: (i)

an assembly of the universal blocking blocks for the internal core,

and (ii) an enumeration of approximately pyramidal parts for the

residual volume. The core computational problem of our method is

that of a coupled decomposition, which targets for:

• Faster fabrication speed, by means of maximizing the size of the

internal core, or equivalently, minimizing the residual volume,

which requires online 3D printing;

• Lower material cost, by means of minimizing the residual volume

and further decomposing it into printing-friendly pyramidal parts,

which incur less support waste for FDM printing; and

• Simpler assembly, by means of reducing the number of residual

parts in the pyramidal decomposition.

Clearly, these goals do conflict with one another. Maximizing the

size of the internal core will overfit the input shape, resulting in

a complex residual with a large number of residual parts. On the

other hand, aiming for a simpler assembly expects fewer residual

parts, or equivalently fewer cuts to partition the residual volume;

however, we may then fail to produce residual parts with pyrami-

dality. Furthermore, for aesthetics, we should avoid cutting salient

regions over the object when partitioning the residual volume.

Objective function. To tradeoff among the goals, we formulate

the following objective function to guide the decompositions:

min (V + αN + βW) , (1)

whereV is the residual volume, N is the number of residual parts,W
is the amount of support (waste) material, and α , β ≥ 0 are the trade-

off parameters. Conceptually, when α , β → 0, we simply maximize

the volume of the internal core. When α , β → ∞, it leads to a pure

pyramidal decomposition with the fewest residual parts.

For simplicity and ease of illustration, we first present our method

using 2D shapes, and then extend it to 3D at the end of Section 5.

Challenges. Since the assembly of the internal core from the

building blocks follows a grid structure, as shown in Figure 3(b),

a brute-force approach to seek the configuration that minimizes

Eq. (1) would be to try different decompositions, as well as differ-

ent grid orientations and positions. However, this would lead to a

combinatorial explosion with intractable computation. Moreover,

our computational problem involves two decompositions: the given

object into internal core and residual, and the residual further into

pyramidal parts. Considering them independently would lead to

suboptimal solutions that cannot meet and balance the conflicting

goals in the objective.

Furthermore, the objective function is clearly nonlinear, and with

a tremendous search space, we must find an efficient search strat-

egy. Last but not the least, the objective is also tedious to evaluate.

Indeed, finding exact values of N and W necessitates a pyrami-

dal decomposition, which is computationally expensive [Hu et al.

2014]. Therefore, we also need quick estimates for the terms in the

objective function to support an efficient solution search.

4 OVERVIEW
As illustrated in Figure 3, our approach starts by fitting large cuboids

inside the input object (a) to find a grid layout with which the object

can enclose the largest number of the cube blocks. This leads to a
maximal internal core as the initial decomposition (b). Moreover,

potential support wastes aligned with the grid (c) are pre-computed.

After that, we iteratively refine the decomposition using local cuts

(d), while making use of the pre-computed waste information to

quickly estimate cost terms in the objective function. After that, we

decompose the residual into pyramidal parts by taking the internal

core surfaces as the bases of the parts, while avoiding the salient

surface regions marked by the user. Lastly, we assemble the 3D-

printed residual parts with the internal core built from the universal

building blocks to reproduce the final object (e).

A key philosophy behind our algorithm is that we start with the

maximal internal core, which already minimizes the first term (V)
in the objective. Hence, when we iteratively refine the internal core,

as shown in Figure 3(d), we only need to focus on finding the best

local cuts that help reduce N andW with a small sacrifice on V .

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

3D Fabrication with Universal Building Blocks and Pyramidal Shells • 189:5

chosen base

Case 1: 90o

(a) precompute ∆w (b) find potential bases

Case 2: 225o or 270o

(c) choose the potential bases that incur less support waste (top vs bottom)

internal
core chosen base

Case 3: 315o (with extra waste)

ch
os

en
 b

as
e

extra
waste

extra
waste

an
ot

he
r

ba
se

OR

(d) all chosen bases (in green)

OR OR

internal
core

ΔwΔw

Δw

Δw

case 1
in (c)

case 2
in (c)

case 3
in (c)

ch
os

en
 b

as
e

Fig. 4. (a) One-time precomputation of slab volume (blue & orange) and deficit volume ∆w (orange) extended from each half edge. To estimateW for a given
internal core, (b) we first find all the potential bases that can be taken to form residual parts; these include the boundary patches on the internal core (blue
edges) and the partitioning lines extended from the corners between adjacent boundary patches (red arrows); (c) at each corner on the internal core (three
major cases are shown above), we locally choose the base that incurs less support waste; note the green lines that indicate the chosen bases and the orange
arrows that indicate the associated support wastes; and (d) we estimateW by summing up ∆w over all the chosen bases (in green).

Other key ideas are applied to the iterative step, which is the most

time-consuming part in our algorithm. This step involves three sub-

problems. The first is how to refine the internal core. For efficiency,

we define a family of local cut operators to explore different ways

of refining the internal core. These operators are simple and fast to

construct, so we can quickly obtain a set of local refinement choices.

The second subproblem is how to evaluate a refinement choice. For

exact evaluation of the objective function, we need to compute a

pyramidal decomposition of the associated residual in order to find

N andW . This is, however, too costly even with a simplified pyra-

midal decomposition. Hence, we develop a fast approximate method

to quickly estimate N andW with the help of the precomputed

waste information. The last subproblem is how to explore the search

space in a tractable manner. To this end, we formulate a beam search

model that ranks the refinement choices and iteratively refines the

internal core as guided by the objective function.

5 ALGORITHM
The major steps in our algorithm include the construction of a grid

layout and maximal internal core, precomputation of support waste,

iterative refinement of internal core, and pyramidal decomposition

of the residual. We describe these steps in Sections 5.1- 5.4, which

cover the 2D case, and present the 3D extensions in Section 5.5.

5.1 Grid layout and maximal internal core
To find the grid layout for forming themaximal internal core, we first

construct a dense distance field inside the input object, and locate

the interior points that are locally furthest away from the object

surface. Centered at each of these points, we initialize a tiny cuboid

with a random orientation, and then iteratively enlarge it and jitter

its position and orientation to maximize its shortest distance from

the object surface, while keeping it inside the object. By repeating

this process, we generate M locally maximal cuboids inside the

object (M=20), each defining a grid orientation; see Figure 3(a).

For each grid orientation, we create a grid layout and randomly

jitter (translate) it in all directions, intending to maximize the num-

ber of full grid cells that can be enclosed in the object; see the blue

cells in Figure 3(b) for an example. Note that the size of a grid cell

1st depth layer (front)

2nd depth layer (front)

1st depth layer (back)

2nd depth layer (back)

front back

Fig. 5. Layered depth images produced from dual depth peeling for the view
perpendicular to the vertical grid edges.

equals the size of a square building block (cube, in the 3D case).

Moreover, for printability, the residual should not be too thin, so we

further require a minimum residual thickness (dmin), and count only

the full grid cells whose shortest distance from the object surface are

larger than dmin. In the end, we pick the grid layout that encloses

the fullest grid cells and pack other types of building blocks around

the full grid cells (with the dmin constraint) to form the maximal

internal core; see the blue and red shapes in Figure 3(b).

5.2 Precomputation of deficit (waste) volume
We perform a one-time pre-computation to support fast estimation

of support waste needed in the subsequent iterative refinement step.

This pre-computation first employs dual depth peeling [Bavoil and

Myers 2008; Everitt 2001] to render layered depth images of the

input object in specific views that are perpendicular to the grid

edges and diagonals: vertical, horizontal, and two diagonals, in 2D;

see Figure 5 for an example. By computing the depth difference

between adjacent depth layers at a pixel, we can quickly determine

an associated integral volume inside or outside the given object.

Next, we build a half-edge data structure over the grid layout.

From each half edge, we extend it towards its right till the outermost

object surface to form a slab volume, and determine its associated

deficit volume (∆w), which is the subvolume inside the slab but

outside the object; see the blue and orange regions in Figure 4(a)

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

189:6 • Chen, X. et al

for examples. Such deficit volume reveals the amount of support

waste in case the associated half edge becomes a base of a pyramidal

residual part. Thanks to the layered depth images, we can quickly

determine the deficit volume by computing the depth difference

across depth images in the view corresponding to the half edge.

Note that by computing the slabs via orthographic projections,

we assume that exterior spaces directly under a printed layer need

to be filled by support material. This is certainly an over-estimate of
support waste, since in practice, FDM printers can build up printed

layers along a slope. For our purpose of obtaining a fast approximate

estimation ofW , we are content with such a result.

5.3 Iterative refinement of internal core
Before we present the iterative refinement procedure, we first ex-

plain how we estimate N andW in the objective function, and how

we use local cuts to refine an internal core.

(i) Estimation of N andW . To estimate the residual part count

(N) for a given internal core, we group connected co-planar half

edges (half faces, in the 3D case) on the internal core surface into

planar boundary patches, e.g., the internal core shown in Figure 3(e)

has eight such patches. Since most boundary patches will become

bases of pyramidal residual parts, we estimate N as the patch count.

Before we present our procedure to estimateW , we first discuss

the key idea behind it. Taking “case 1” marked in Figure 4(b) (corre-

spondingly, see case 1 in Figure 4(c)) as an example, we have a pair of

adjacent boundary patches next to a 90° corner on the internal core.

In this case, we may take either boundary patch, the vertical or the

horizontal patch, as the base for forming a 3D-printed residual part.

To choose between them, we can estimate the amount of support

waste that will incur for each choice, and take the one with less

waste. Similarly, for the other cases (corners) shown in Figure 4 (b

& c), we also have choices of bases for forming residual parts. By

summing up the support waste over all the chosen bases, we can

then find an estimate of the overall support wasteW .

There are three substeps to estimateW . In the first substep, we

find all potential bases for forming residual parts, and for each base,

estimate its associated support waste. In detail, there are two kinds of

base: (i) boundary patches on the internal core, and (ii) partitioning

lines (planes, in the 3D cases) extended in parallel from the boundary

patches (until reaching the object surface) for dividing the residual

volume into parts. We do not consider arbitrary partitioning lines,

since extending partitioning lines from boundary patches keeps the

residual part count (N) and leads to a simple and efficient residual

decomposition. In the end, we sum ∆w over the half edges on each

base to estimate the support waste of each base. Note that for each

partitioning line, we locate the connected object surface above it

and project the surface onto its plane; if the projected image goes

beyond the partitioning line, we extend the partitioning line further

to cover the projected image for a more accurate estimation of the

support waste; see the dashed red lines in Figure 4(b) for examples.

The second substep iterates the corners on the internal core and

chooses the bases that incur less waste. There are three major cases

in this substep (see also Figure 4 (b & c)). The first case compares

potential bases at 90° corners, while the other two compare potential

bases (partitioning line pairs) at 225°/270°, and 315° corners:

• For the 90° corner case (see “case 1” in Figure 4(c)), we choose

between the two adjacent boundary patches. In the example

shown in the figure, we choose the vertical base (bottom

choice), since it incurs less waste than the other choice.

• For the 225°/270° case (see “case 2” in Figure 4(c)), we choose

the base on the bottom (which includes a boundary patch and

its extended partitioning line), since it incurs zero waste.

• Besides the regular support waste, the third case (see “case

3” in Figure 4(c)) shows situations with an extra waste along

a slope. To illustrate the extra waste, we take the bottom

choice in this case as an example, where the chosen base

forms the residual part that covers the top-left portion of the

ear of the rabbit. Next to this residual part, we have another

residual part for the lower-right portion of the ear; since the

ear portion here will be printed at a slope over “another” base,

it thus incurs an extra waste; see the figure for the illustration.

• Note also that we ignore the case for 45° corners, since they

are rare. Out of the sixteen 3D shapes we tested in the exper-

iments, only two of them have a few 45° corners, and these

corners were found to incur zero waste. On the other hand,

we ignore the case for 135° corners for efficiency concern. To

handle 135° corners, we have to compute the geometry of each

base and calculate the waste separately to avoid summing

duplicated waste, which is computationally very tedious.

Lastly, the third substep sums up the support wastes (∆w) over
all the chosen bases to find the estimatedW ; see Figure 4(d). It is

important to note that we design this approximate method with

efficiency in mind. Taking the Horse model shown in Figure 23 as

an example, our method only took 35∼77milliseconds to estimateW
(which is crucial to support the iterative refinement) as compared to

∼17min. for a general pyramidal decomposition [Hu et al. 2014] and

∼12.6 sec. for the simplified pyramid decomposition to be presented

in Section 5.4. Moreover, an experiment to be presented in Section 6

also shows that the trend ofW estimated by our method roughly

follows the trend ofW estimated by Cura [Ultimaker ltd. 2017].

Lastly, for shapes with extensive overhangs, the estimated W may

have high errors; see the limitations in Section 7 for the details.

(ii) Local cut operators. As an initial solution, themaximal internal

core usually overfits the object interior with an irregular boundary;

see Figures 6 and 7. Hence, we will employ the objective function as

a guidance to iteratively refine the internal core to reduce N andW
with least increase inV . This means that to optimize the refinement,

each step should not bring a large increase inV , but at the same time,

should simplify the internal core for smaller N (fewer boundary

patches) and desirably smallerW (less support waste). Additionally,

the refinement should be simple to construct and fast to compute,

since we will need to explore many refinement choices in the search

process. With these criteria in mind, we design the following local

cut operators to produce candidates in each refinement step:

• Boundary cut takes a boundary patch on the internal core as a

cut plane to remove a small connected component (locally next

to the patch) from the internal core; see Figure 6(a);

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

3D Fabrication with Universal Building Blocks and Pyramidal Shells • 189:7

(b) inner boundary cut (c) inner corner cut (d) combined cut(a) boundary cut

local cuts

picked patch
picked corner

internal core internal core

picked patch

internal core internal core

Fig. 6. The four local cut operators (a-d) considered in our solution for refining the internal core and improving the objective function.

• Inner boundary cut removes a slightly larger connected compo-

nent for efficiency concern by moving the cut plane in the case

of boundary cuts one unit deeper; see Figure 6(b);

• Inner corner cut removes a small connected component around a

sharp corner with a cut plane one unit below; see Figure 6(c); and

• Combined cut removes a tiny component in a concave region on

the internal core, thereby leading to a high chance of reducing N .

To form a combined cut, we find a pair of nearby local cuts formed

by some other operators, and take the intersection volume of their

associated connected components as the region to be removed by

the combined cut operator; see Figure 6(d).

(iii) Iterative refinement. Recalling the problem setting described

in Section 3, we start with a maximal internal core with minimum

V , and formulate a beam search model to iteratively refine the

internal core (denoted as P) with local cuts and improve the objective

function in each iteration; see the procedure outlined below.

K = beam search width

P = construct an initial decomposition (maximal internal core)

P∗ = P // initialize the optimal decomposition

PK = { P } // initialize the set of K best decompositions with P
while true do
S = find a set of local cut candidates on PK
SK = pick K cuts in S with best positive gain in Eq. (1)

if SK is not empty then
PK = apply SK to update K best decompositions

P∗ = best decomposition in PK
else if α < upper bound of α then
α += δα
continue

else
break

end if
end while

For a given internal core, we obtain a set of local cut candidates

by applying a boundary cut and an inner boundary cut for each

boundary patch, and an inner corner cut at each sharp corner. More-

over, we take a pair of nearby cuts to form a combined cut, if their

local-connected components have a nonempty intersection volume.

In practice, this may lead to several thousand candidates for a 3D

internal core, so we filter out those that remove more than 10% of the

internal core volume. For each candidate, we estimate its N andW
and deduce its gain in the objective function, i.e., ∆V+α∆N+β∆W
(see Eq. (1)), where ∆V , ∆N , and ∆W are the amount of reductions

in V , N , andW , respectively. In each iteration of the beam search

model, we find the K local cuts that lead to the best positive gains,

and apply them to refine the internal cores in PK accordingly.

The initial decomposition is basically a solution for which we

optimize the objective function with α=β=0, since the maximal

internal core simply minimizes V . Empirically, we found that if we

set α to its respective target value when the iterative procedure

starts, we may easily trap at some local minima too early in the

search process. Hence, we initialize α to zero and gradually increase

it by δα , every time we cannot find any local cut candidate with

positive gain in SK . This strategy is similar in spirit to the weight

decay concept [Hertz et al. 1991]; essentially, when we gradually

increase α in our case, we gradually reduce the influence of V .

5.4 Final decomposition
After obtaining the optimized internal core, we have two final sub-

steps, one on the internal core and the other on the residual.

For the internal core, we greedily arrange first the larger-size

building blocks, which, as illustrated in Figure 3(e), can be fabricated

either by pre-printing (or molding) or by pre-assembly of smaller

blocks, so that we can assemble the internal core from fewer parts.

For the residual, we further decompose it into parts using a simpli-
fied pyramidal decomposition, which takes the internal core surfaces

(boundary patches) as bases rather than arbitrary partitioning planes

as in the general pyramidal decomposition [Hu et al. 2014]. In our

implementation, we first find all the potential partitioning planes,

partitioning
planes

residual
Internal
core

including the extended partitioning

planes we identified earlier, e.g., see

the red arrows in Figure 4(b), as well

as additional partitioning planes per-

pendicular to the bases specifically for

the case of 135° corners; see the inset

figure. Then, we apply them to over-segment the residual volume.

Now, we should have the full geometry of each residual fragment

for more accurate estimation of support waste, so we merge frag-

ments into residual parts by choosing partitioning planes that incur

less support waste. This is a binary decision by checking possible

merges at every corner (or edge, in 3D) on the 2D internal core.

Salient regions. Users may also mark salient regions on the input

shape, so that the binary decision can avoid cutting through salient

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

189:8 • Chen, X. et al

boundary
patches

residual
parts

input
model

larger
building
blocks

V=45.1%
W=20.3%

N=73

V=46.5%
W=8.9%

N=64

V=49.2%
W=0.38%

N=48

V=51.0%
W=0.21%

N=40

V=51.3%
W=0.21%

N=37

V=51.5%
W=0.21%

N=34

V=47.4%
W=0.38%

N=56

V=55.2%
W=0.31%

N=10

maximal
internal core

Fig. 7. A running example showing our algorithm at work on the Couch model in 3D; see the changes in the estimated V ,W and N values over the iterations.
Note that V andW are presented in proportion (%) to the whole object volume.

Wcura(%) = 3.57 Wcura (%) = 0.75

Wcura(%) = 0.61Wcura(%) = 1.28

Fig. 8. From left to right, input shapes with user-marked salient regions
(in yellow), pyramidal residual decomposition with and without avoiding
salient regions;Wcura denotes theW estimated by Cura. It is presented in
proportion (%) to the whole object volume.

regions; see Figure 8 for results. This may lead to an increase in

support waste (W), but N and V will remain unchanged.

5.5 Extension to 3D
We now extend the algorithm described so far to 3D with the fol-

lowing amendments. First, we employ four different shapes as the

universal building block set; see Figure 1. Moreover, we use a 3D

grid layout and form a 3D maximal internal core; see Figure 7.

Second, when we use the dual depth peeling method to generate

the layered depth images, we consider thirteen orthographic views

in 3D, and extend the half-edge data structure to half-face data

structure in the 3D grid to store the precomputed deficit volume.

Recalling that a boundary patch is a group of connected co-planar

faces (half faces) on the internal core, their topology in 3D is more

complex than that in 2D; see the third image on top of Figure 7.

Hence, we build a graph data structure to encode their connections:

a node for each patch and an edge for each connection. Using this

graph, we can then find local cut pairs that are topologically close

to each other for forming the combined cut candidates.

Fourth, to estimateW in 3D, potential bases include the boundary

patches on the internal core and partitioning planes extended from

sharp edges (225°, 270° & 315°) shared between boundary patches.

Combined cuts with two cut planes may

not be sufficient in 3D. Thus, we intro-

duce the cavity cut to remove a small con-

nected component at the corner met by

three boundary patches at angles ≤ 135°;

see the inset figure for an example.

Lastly, we make binary decisions at edges instead of at corners

between adjacent boundary patches to determine partitioning planes

in a 3D pyramidal decomposition. Unlike the 2D case, we may have

unassigned residual fragments, e.g., at exterior corners, where three

boundary patches meet. Hence, we use the same principle, i.e., less

support waste, to assign (i.e., attach) these fragments to nearby

residual parts to complete the pyramidal decomposition.

6 RESULTS AND EVALUATION
In this section, we present results produced from our algorithm on

various 3D shapes, and present experiments conducted for evaluat-

ing different aspects of our algorithm.

Parameters. Our algorithm has the following parameters: weights

in the objective function (δα , α , and β), branching factor in beam

search (K), minimum residual thickness (dmin), and size of grid

cells or building blocks (l). All the results shown in the paper are

generated usingδα=1,α=2, β=1,K=5, anddmin=3mm.Note that the

value of l depends on the size of the building blocks we employed.

Decomposition results. Figure 23 shows a gallery of our results:

the internal cores are assembled from the universal building blocks,

while the residuals are composed of approximate pyramidal parts.

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

3D Fabrication with Universal Building Blocks and Pyramidal Shells • 189:9

Table 1. Comparing our method to conventional 3D printing. Notations: residual volume (V); residual part count (Nres.); waste volume (W); building block
count (Nblock), which includes blocks in finest (l=2cm) and double (l=4cm) scales; time to run our method (Talgo.) in min.; amount of material (M) in gram;
volume of support material (Vsup.); time to print and assemble residual parts (Ttotal) in hours; costs (C) in USD; and time to fabricate the whole object (Tobj.) in
hours. In the 1st column, asterisks indicate models with salient region mark-up, while the last two columns show the overall percentage savings of our method
in terms of fabrication cost and time. Note also that the Cura Software [Ultimaker ltd. 2017] is used to estimate the values of M, Vsup., and 3D printing times.

model V (%) Nres. W (%) Nblock Talgo. (min) Mres. (g) Msup. (g) Mtotal (g) Vsup. (%) Ttotal (h) Cres. Cblock Ctotal Mobj. (g) Msup. (g) Mtotal (g) Vsup. (%) Tobj. (h) Cobj. Creduc. Treduc.

Arch 32.1 16 0.05 300 46.7 2162 45 2207 0.79 187.8 44.1 11.4 55.5 5700 636 6336 11.16 514.4 126.7 56.2 63.5
Bimba 62.4 25 0.35 64 22.7 644 7 651 0.82 58.5 13.0 3.1 16.1 849 278 1127 32.74 93.7 22.5 28.5 37.5
Couch 55.2 9 0.31 78 12.8 1223 3 1226 0.17 104.4 24.5 4.0 28.6 1808 325 2133 17.98 173.2 42.7 33.1 39.7

Double torus 60.7 24 0.60 77 6.5 2003 10 2013 0.39 177.7 40.3 5.2 45.4 2577 736 3313 28.56 270.0 66.3 31.4 34.2
Duck 62.0 18 0.60 63 19.5 1202 36 1238 2.11 106.1 24.8 4.0 28.8 1706 327 2033 19.17 166.1 40.7 29.2 36.1

Fandisk 52.4 14 3.80 79 6.2 725 48 773 4.20 63.2 15.5 3.4 18.8 1143 47 1190 4.11 96.5 23.8 20.8 34.5
House 34.3 7 0.71 28 2.6 572 9 581 0.65 49.1 11.6 4.0 15.7 1376 383 1759 27.83 141.6 35.2 55.5 65.3

Letters SIG 45.9 34 2.19 63 4.2 961 5 966 0.31 85.6 19.3 5.4 24.7 1637 0 1637 0.00 130.9 32.7 24.5 34.6
Ns 32.1 24 0.11 240 35.9 3655 0 3655 0.00 286.2 73.1 33.8 106.9 8870 2034 10904 22.93 874.1 218.1 51.0 81.5

Trophy 59.3 23 0.06 52 7.0 564 1 565 0.14 52.1 11.3 2.1 13.4 704 297 1001 42.19 82.1 20.0 32.9 36.5
*Horse 65.9 21 9.90 84 41.5 1274 226 1500 10.21 138.1 30.0 3.7 33.7 2214 1586 3800 71.64 314.5 76.0 55.7 56.1

*Sphynx 54.4 13 1.42 58 5.1 452 8 460 1.17 41.2 9.2 1.5 10.7 682 45 727 6.60 60.1 14.5 26.2 31.4
*Squirrel 54.9 20 0.06 80 43.5 745 0 745 0.00 68.8 14.9 3.8 18.7 1053 269 1322 25.55 108.8 26.4 29.4 36.7
*Toy train 46.8 16 0.32 91 78.4 1829 38 1867 1.28 162.1 37.3 5.1 42.5 2963 1361 4324 45.93 349.7 86.5 50.9 53.7

*Triceratops 62.7 20 5.75 102 33.3 1132 126 1258 8.74 116.6 25.2 5.7 30.9 1441 907 2348 62.94 193.2 47.0 34.3 39.6
*Vase-lion 57.8 22 1.98 53 15.1 568 28 596 3.57 56.0 11.9 3.2 15.1 785 216 1001 27.52 84.5 20.0 24.5 33.7

Results of Our Method Estimated 3D Printing with Our Method Estimated Conventional 3D printing % Reduction

Fig. 9. Building blocks employed in this work. Left: from a consumer brick
set. Right: blocks from a low-end 3D printer (in red) and blocks from a
higher-end 3D printer (in white).

We tested a rich variety of models, from house and furniture, to ani-

mals, toys, and statue, etc. The model shapes have varying degrees

of complexity, and some have complex non-bulky interiors. Next

to each figure pair, we show the model name and the associated

percentage reduction in the estimated fabrication time and cost as

compared to conventional 3D printing. These results show that our

method brings positive improvements for all the presented models.

Note also that the shapes of the internal cores optimized by our

method; these shapes not only abstract the interior of each model

but are also optimized for the benefit of using the universal building

blocks, as well as the printability of the residual parts.

Preparing the building block set. Our primary choice of the build-

ing blocks is a consumer brick set, which provides cubes (l=2cm)

and triangular prisms; see Figure 9 (left). The cost of each cube

is only around US$0.012. Moreover, we may pre-print the building
blocks, particularly for the non-cube types, since the consumer brick

set provides mainly cubes with limited triangular prisms. For 3D

printing with PLA material, the cost is around US$0.06 per cube,

given PLA material at US$0.02 per gram. We tried both Ultimaker

2+ Extended (a higher-end 3D printer) and TierTime UP Plus 2 (a

low-end 3D printer) to produce the 3D-prints; see Figure 9 (right).

In addition, we explored molding as a means to create the building

blocks; a quoted cost we got in making a mold is US$145 and that

Fig. 10. Larger building blocksmade by pre-printing (top) or by pre-assembly
from smaller made building blocks (bottom).

in making a cube block (l=2cm) is around US$0.058 for an order

of ten thousand pieces. Lastly, for larger building blocks, we may

pre-assemble them from smaller building blocks, or pre-print them
to make the internal volume hollower; see Figure 10 for examples.

Statistics of results and comparison. Table 1 shows the statistics

of results in four parts. From left to right, the first part shows the

basic results of our method: V and W are in proportion (%) to the

whole object volume, Nres. is the residual part count, Nblock
is the

building block count, and T
algo.

is the time taken to run our method

on a desktop computer with Intel i7-6700K 4GHz CPU and 16GB

RAM. Overall, we can see that our method produces large internal

cores with not too many residual parts. Particularly, it finishes its

computation in the order ofminutes, which is negligible as compared

to the time needed to fabricate and assemble the residual (T
total

).

The second and third parts in Table 1 compare the material con-

sumption (M), fabrication time (T) and cost (C) between our method

and conventional 3D printing. The T, M, and support volume (Vsup.)

quantities in these two parts are estimated using Cura Software

(Version 15.04 [Ultimaker ltd. 2017], which is a 3D-print prepara-

tion software, with the following settings: using the 3D printer

Ultimaker 2+ Extended and a filling rate of 43.85%. In detail, T
total

includes the time taken to print our method’s residual parts and

to attach them onto the interior core (note that we assemble the

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

189:10 • Chen, X. et al

o
b
je
ct
iv
es

1 2 3 4 5

V
N
W(%)

Fig. 11. Effect of parameter α on V , N andW .

Fig. 12. Effect of parameter β , particularly onW .

interior core from building blocks while the residual parts are being

printed); empirically, the time taken by a single student to attach

the residual parts onto the interior core is around 20 to 30 min.;

T
obj.

is the time taken to fabricate the whole object in the case of

conventional 3D printing, Vsup. is the associated support volume,

while Mres., Mobj.
, and Msup. are the amount of print material for the

residual parts (our method), the whole object (conventional), and the

associated supports, respectively. Hence, M
total

= Mres.+Msup. for

our method, and M
total

= M
obj.

+Msup. for conventional 3D printing.

The cost (C) terms in Table 1 are estimated based on (i) the price

of a cube block in the consumer brick set (US$0.012); and (ii) the

PLA material cost (US$0.02 per gram). Using these numbers, we

can estimate the cost of printing the residual parts (our method)

and printing the whole object (conventional), i.e., Cres. and Cobj.
. To

estimate the cost of building blocks C
block

, we multiply US$0.012

with the number of finest scale building blocks instead of N
block

,

since N
block

considers larger building blocks. Hence, the total cost

of our method C
total

is Cres. + C
block

.

From the above numbers, we can deduce how much our method

saves in terms of the overall fabrication time and cost as compared

to conventional 3D printing; see the last part in Table 1. Comparing

C
total

and C
obj.

, we show that our method saves ∼36.5% of fabri-

cation cost on average; the saving is not only in terms of print

material by means of using low-cost building blocks to form the

object interior, but also in terms of the reduction in support material

by considering pyramidal decomposition of residual early in our

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9
#iteration

Sphynx waste
Wcura
Westimation

W
 (%

)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11
#iteration

Vase‐lion waste
Wcura
Westimation

W
 (%

)

Fig. 13. Plotting our estimated waste (in orange) vs Cura estimates (in blue)
for the Vase-lion and Sphynx models over all iterations.

score: 105.94
beam width = 100

time: ~1.83h

(b) (c)

score: 107.48
beam width = 5

time: 307s

(a)

score: 130.86
𝑁𝑟 = 10000
time: ~5.03h

Fig. 14. Our solutions found for the Sphynx model using (a): random search,
(b): beam search with width = 100, and (c): current solution.

computation. Comparing T
total

and T
obj.

, our method saves ∼44.7%

of fabrication time on average, since the time taken to compute our

method is negligible as compared to the 3D printing time.

Effects of parameters in objective function. A larger α puts more

emphasis on minimizing N , so the beam search process will try to

find decompositions with fewer residual parts. However, residual

volume (V) will increase, as a tradeoff. Figure 11 shows an example

on how α affects the decomposition results of Vase-lion, especially

its effect onV and N . The other parameter in the objective function

is β , which associates with the waste term. From the results shown

in Figure 12, we can see that if β is set to zero, meaning that we

do not care the amount of waste in the result; the estimated waste

can then rise up to as high as 20% of the object volume. This result

shows that our optimization model is able to avoid decomposition

solutions that lead to a large amount of support waste.

Waste estimate forW . Figure 13 shows, for two models, the result

of our estimated support waste vs. estimates provided by Cura,

which we treat as the ground truth. As can be observed, over all

solution iterations, the two estimates exhibit similar trends. Test

results on other models also show that the trend seen in Figure 13 is

quite representative; hence, it presents a strong indication that our

W estimate holds merit when applied to rate the decompositions.

Optimality assessment. To explore how close our current solu-

tion is to being the global optimum, we make the solution search

significantly more exhaustive and compare the solutions found to

our current one. Since finding optimal solutions analytically, even

for simple examples, is highly unlikely, we hope that by making the

search highly exhaustive, we can obtain solutions that are close to

being optimal. To this end, we tested two exhaustive search options:

random search and beam search with a much larger beam width

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

3D Fabrication with Universal Building Blocks and Pyramidal Shells • 189:11

L

object size (L) = 15cm
(V=57.1%, N=46, W=0.9%)

L

object size (L) = 13.1cm
(V=64.1%, N=17, W=0.6%)

L

object size (L) = 11.2cm
(V=53.6%, N=33, W=0.5%)

L

object size (L) = 9.4cm
(V=54.4%, N=13, W=1.4%)

object size (L) = 5.6cm
(V=91.3%, N=10, W=0.8%)

L L

object size (L) = 7.5cm
(V=70.7%, N=21, W=5.5%)

L

object size (L) = 16.8cm
(V=41.4%, N=64, W=1.7%)

Fig. 15. Our results for the Sphynx model in varying scales. We report the object size (i.e., the model width L), residual volume V (%), residual part count
N (estimated), and support wasteW (%) below each result, and show a unit cube of fixed size (2cm) on the lower left of each result to reveal the scale.

105.5

106

106.5

107

107.5

108

10 50 100 200 300 400 500

score

beam width

Fig. 16. Plot of objective function values over beam width.

(K) than our current choice. The random search starts with the

maximum internal core, then we randomly select a child from all

possible cuts, and repeat until we empty the internal core. We repeat

the random search Nr =10, 000 times and pick the best solution. For

the large-width beam search, we keep α and β constant throughout,

and tested K with 10, 50, 100, 200, 300, 400, and 500.

Figure 14 shows the solutions found on the Sphynx model with

the three options, including the solution using our default setup

(e.g., beam width (K) is set to 5). As one would expect, our current

solution outperforms random search and is bested by a beam search

with width 100; our current solution, however, only takes minutes

to compute and yet its result is already comparable to a beam search

with much larger width. Figure 16 shows that, by varying the beam

width, the objective function value quickly stabilizes and does not

change after the width exceeds 100, while solutions obtained for

beam width 5 or 10 are not so far off.

Comparison to general pyramidal decomposition. We also explored

the optimality of our simplified pyramidal decomposition in terms

of residual part count and support waste amount as compared to a

general pyramidal decomposition, where the partitioning planes can

be arranged arbitrarily in 3D. Taking the residual volumes of the

Trophy, House, and Sphynx models as inputs, we recruited three

researchers who are experienced in geometry processing to help

divide the residual volumes into minimal approximate pyramidal

parts. Specifically, the residual volumeswere presented as 3Dmeshes

in Maya and were cut into parts using Boolean operators; overall,

each user took around 5 to 10 min. to come up with a decomposition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Trophy House Sphynx

W
(%

)

ours general

0

5

10

15

20

25

Trophy House Sphynx

N
um

be
r o

f r
es

id
ua

l p
ar

ts
ours general

Fig. 17. Simplified pyramidal decomposition (denoted as ours) vs. general
pyramidal decomposition (denoted as general).

Fig. 18. The optimal pyramidal decomposition created by a participant on
the House model has only four residual parts and nearly zero support waste.

solution and another 20 to 30 min. to cut the residual. In the end,

for each model, we pick the decomposition with the lowest residual

part count as the general pyramidal decomposition result, and then

estimate the support waste associated with the residual parts.

Figure 17 shows the comparison results. On the left, we can see

that general pyramidal decomposition usually leads to fewer residual

parts, since it allows arbitrary partitioning planes. On the right, we

can see that our method has comparable support waste for two of

the three models, except for the House model. By cleverly arranging

the partitioning planes for House (see Figure 18), we can even obtain

an optimal decomposition with nearly zero support waste. More

visual comparisons can be found in the supplemental material.

Our results in varying scales. Taking the Sphynx model as an

input, we linearly scale it and generate results under different scales.

Figure 15 presents the results, showing that our algorithm can work

for every scale, while keeping the same size for the universal blocks.

Comparison to CofiFab. We obtained the code of CofiFab from the

authors and ran it on several models. For quantitative comparison,

we also ran our method on the same set. Table 2 summarizes the

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

189:12 • Chen, X. et al

Fig. 19. Physical fabrication results. Here we show the assembly sequences of the House (top), Vase-lion (middle), and Sphynx (bottom) models.

Table 2. Comparing the cost-efficiency of our method and CofiFab.

Ours Cof. Ours Cof. Ours Cof. Ours Cof. Ours Cof.
Bimba - 21 25 20 7 19 62.4 47.3 16.1 20.5
House - 7 7 7 9 11 34.3 30.5 15.7 21.3

Squirrel - 30 20 24 0 83 54.9 52.3 18.7 24.7
Vase-lion - 24 22 22 28 60 57.8 50.4 15.1 21.9

Arch - 38 16 34 45 143 32.1 37.7 55.5 76.5
Donut - 36 18 28 0 63 60.0 58.2 28.7 34.2
Duck - 36 18 32 36 106 62.0 62.5 28.8 38.1

Ns - 48 24 40 0 202 32.1 34.9 106.9 101.3
Toy train - 29 16 25 38 89 46.8 40.5 42.5 53.5

Ctotal

Bulky
shape

Complex
shape

Ours vs. CofiFab
Npanel Nres. Msup. (g) V (%)

results: N
panel

denotes the number of laser-cut panels for building

CofiFab’s internal cores, Nres. denotes the number of residual parts,

Msup. denotes the amount of Cura-estimated support wastes, V

denotes the residual volume, and C
total

denotes the overall estimated

fabrication cost in USD. Note that to estimate the fabrication cost

of CofiFab, we consider a common laser-cut panel material, which

is plastic (acrylic) with 3mm thickness and US$10.8 for 80cm×80cm.

Besides tabular comparison, we provide side-by-side comparisons

of two sets of decomposition results in the supplemental material.

FromTable 2, we can see that for complex shapes, CofiFab requires

more laser-cut panels (N
panel

) to create more convex polyhedra, so

that the interiors of the complex shapes can be more fully filled by

the internal cores formed by the panel assemblies. Since CofiFab

creates one residual part roughly for each internal core face, it thus

produces more residual parts (Nres.) over the exterior of the fabri-

cated object as compared to our method. Moreover, CofiFab incurs

more support waste (Msup.) than our method in the 3D printing of

the residuals parts, since our method jointly considers the residual

part count and waste material early in the optimization. Further-

more, we can also see from Table 2 that the overall fabrication cost

(C
total

) of our method is usually lower than that of CofiFab, since

we maximize the use of low-cost building blocks and minimize the

support waste incurred in printing the residual parts.

Last but not least, we would highlight that all parts, in both resid-

ual and internal core, fabricated by CofiFab are custom-made. Hence,
it has relatively less restriction on the parts geometry; by customiz-

ing more laser-cut panels and creating more convex polyhedra, it

can assemble an internal core that better fits the object interior with

a smaller residual volume (V), e.g., the internal core in CofiFab’s

Arch model only has six convex polyhedra and 38 laser-cut pan-

els. In contrast, we aim to maximize the benefit of using universal
building blocks in 3D fabrication; the same set of building blocks

is used to form the internal core for various objects. Interestingly,

from the results shown in Table 2, we can see that by using our

universal building blocks of just four types, our method can still

achieve residual volumes (V) whose sizes are mostly comparable to

those of CofiFab. Additionally, our method involves fewer residual

parts, less support waste, and lower overall fabrication cost.

Physical fabrication. Figure 19 shows physical fabrication results

of the House, Lion, and Sphynx models. When producing these mod-

els, we attach the 3D-printed residual parts onto internal cores using

blu-tack, which is a reusable adhesive, allowing us to disassemble

and re-assemble the structure. Also, when computing the volume

decompositions, we consider tolerance between the parts.

Extension with LEGO-built internal core. We can easily extend our

method to allow the use of LEGO bricks to build an entire internal

core in the form of a regular voxelized shape; see Figure 20 (left). We

only need to slightly modify our algorithm by having only cubes in

our building block set (but with side length 1.58cm, according to the

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

3D Fabrication with Universal Building Blocks and Pyramidal Shells • 189:13

Fig. 20. Physical fabrication results with LEGO-built internal core. From
left to right: internal cores built from LEGO bricks, some residual parts
attached, the completed assemblies, and then the internal core and the
parts composition in virtual.

Table 3. Quantitative comparison with LEGO-built internal core.

model V (%) Nres. W (%) Mres. (g) Msup. (g) Mtotal (g) Vsup. (%) Ttotal (h) Cres.

Sphynx 54.4 13 1.4 452 8 460 1.2 41.2 9.2
Sphynx (LEGO) 64.8 13 0.7 493 5 498 0.7 43.5 10.0

Vase‐lion 57.8 22 2.0 568 28 596 3.6 56.0 11.9
Vase‐lion (LEGO) 66.2 14 1.4 612 14 636 1.8 59.1 12.7

Results Estimated 3D Printing

physical dimensions of LEGO voxels) and by performing only local

cuts parallel to the three major planes. In this way, we can run the

same algorithm in our method to optimize and generate LEGO-built

internal cores, and the pyramidal residual parts for 3D printing.

Figure 20 presents physical fabrication results on the Vase-lion

and Sphynx models, showing the feasibility of using LEGO bricks

to build the internal core in our method. Note that, since the dimen-

sions of standard LEGO bricks are not exactly cubical, we compose

basic LEGO bricks of standard size together with flat LEGO bricks

and flat LEGO tiles to form the internal cores. Table 3 presents a

quantitative comparison between our method with all four building

block types and our method with the LEGO bricks (cubes only). We

can see from the table that for the case of LEGO-built internal cores,

since it makes use of one type of bricks only, i.e., the cubes, the

resulting residual volumes (V) are generally larger, so the costs of

printing the residual parts (Cres.) are relatively higher. However, due

to the constraints on the local cuts, we now have fewer cuts on the

internal cores, so the tradeoff is that our method will generate fewer

residual parts in the case of LEGO-built internal cores. Concerning

the performance, it took around 25 minutes to build each of the

LEGO internal cores (for an experienced LEGO builder) shown in

Figure 20, while the computation time of our method for both cases

(four types of building blocks vs. LEGO voxels) are similar.

Other Extensions. We may segment the input model into multi-

ple components and construct an interior core assembly for each

component; see Figure 21 (left) for an example. In addition, if we

cuts

[head]
V=44.5%
W=0.09%

N=26

Layer #1
(left)

Layer #2
(top)

Layer #3
(back)

V=41.63%
W=0.34%

N=10

V=55.18%
W=0.34%

N=10

[body]
V=53.9%
W=0.02%

N=20

Fig. 21. Extensions: piece-wise internal core (left) and packing additional
layers of half-sized building blocks (right).

utilize finer-scale building blocks, we can take a coarse decomposi-

tion result and improve the objective function by adding layers of

finer-scale building blocks. Figure 21 (right) shows such an example,

where we attach layers of half-sized building blocks (in gray) on the

internal core, and further reduce V from 55.18% to 41.63%.

7 DISCUSSION, LIMITATION, AND FUTURE WORK
We present a novel solution, aiming at maximizing the benefits of

using low-cost building blocks for cost-effective 3D fabrication. We

use a universal building block set to assemble the internal core of

the target 3D object, thus avoiding online fabrication of the core. By

further considering pyramidal decomposition of the residual and

support waste reduction, we can further minimize the necessary

printingmaterial consumption. As a result, we can reduce the overall

fabrication cost and time, with the internal core constructed offline

and assembled in parallel to the online printing of the residual.

The ultimate goal of this work is to enable efficient, mass pro-
duction of 3D objects. On the one hand, the building blocks can be

made in mass quantities via traditional and affordable methods such

as molding. On the other hand, the universality and regularity of

the block set would facilitate automated mass construction of the

internal cores, e.g., using a robot along an assembly line.

Our core contribution is a computational solution that optimizes

the use of a universal building block set for cost-effective 3D fabri-

cation. We defined an objective function to seek a decomposition

that leads to small residual volume, few residual parts, and low

support waste. We formulated a beam search strategy to iteratively

refine the internal core with local cuts, and devised methods to

quickly estimate the residual waste and part count terms in the

objective function, as well as pre-computation via depth peeling to

further accelerate the computation. Lastly, we developed a simpli-

fied pyramidal decomposition method to partition the residual into

printing-friendly (near) pyramidal parts.

As the first attempt to use building bricks for cost-effective 3D

fabrication, our current approach still has some limitations. First,

as we remarked above, using non-cubical and more specialized

building blocks may help reduce assembly cost, but at the expense

of universality. Our current optimization is geared towards cubical

blocks and their derivations; an extension to more general blocks

requires further investigation. Second, our solution is not scale-

independent under continuous scaling, meaning that in general, as

the input object scales up continuously, our internal core, formed

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

189:14 • Chen, X. et al

Fig. 22. An example model, whereW estimated by our method (23.5%) is
far larger than that by Cura (7.4%) due to the large overhangs on the left
and right sides of the model. On the left, the bundled green lines show the
correct estimated waste corresponding to the vertical green bases on the
internal core, while the bundled red lines show the incorrect estimated waste
corresponding to the red bases on the bottom. From the final decomposition
shown on the right, we can see that the red wastes do not really exist.

by building blocks, cannot simply be scaled up continuously; see

again Figure 15. However, if the input objects are scaled only in

proportions to the minimum building block size, our method is
scale-independent. Third, our waste estimate is an approximation.

Although we have shown that the waste estimate holds merits when

applied to rate the decompositions, potential miscalculations may

happen due to overhangs and ignorance of the 45° and 135° corner

cases. Figure 22 shows an example with large overhangs, where

the waste estimated by our method (23.5%) is far larger than that

by Cura (7.4%). Fourth, since we preserve the salient regions by

a post-processing, the preservation is achieved only by means of

selecting the right bases over a fixed internal core. Hence, we may

not always avoid cutting the salient regions when partitioning the

residual. Figure 8 shows the capability of our approach. We believe

that the optimal approach should incorporate salient regions as

hard constraints, meaning that we could, in fact, integrate it into the

core solution search to avoid partitioning planes that cut through

the salient regions. However, the optimization problem may then

become intractable. Lastly, our current method does not explicitly

consider imbalance (due to hollowed lightweight building blocks

in the core), structural weaknesses, and building strength that is

dictated by connections between blocks and the residuals.

In future, aside from addressing the limitations mentioned above,

we would also like to study the potential of our method for fabricat-

ing large objects due to its assembly nature. On the other hand, we

would like to explore the possibility of 3D printing directly onto an

internal core assembled from building blocks, instead of attaching

separately printed pieces onto it. Recent advances in the additive

manufacturing community have considered the process of building
around inserts, which corresponds to adding material to already

fabricated objects, e.g., via a CNC accumulation scheme [Zhao et al.

2013]. To ensure that our internal core can be directly operated on

by an additive manufacturing process, additional constraints need

to be enforced, leading to an intriguing geometric problem.

ACKNOWLEDGMENTS
We thank all the anonymous reviewers for their insightful com-

ments and feedback. We also acknowledge help from Sha He on

video editing and YuanWei on physical fabrication. This work is sup-

ported in part by grants from National 973 Program (2015CB352501),

Research Grants Council of the Hong Kong Special Administrative

Region (Project no. CUHK 14203416 and 14201918), Israel Science

Foundation (2366/16), ISF-NSFC Joint Research Program 2217/15,

NSERC grant (611370) and gift funds from Adobe.

REFERENCES
Louis Bavoil and Kevin Myers. 2008. Order Independent Transparency with Dual Depth

Peeling. Tech. rep., NVIDIA Corp.

Amit H. Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of

the Art in Methods and Representations for Fabrication-Aware Design. Computer
Graphics Forum (Eurographics) 36, 2 (2017), 509–535. STAR volume.

Dustin Beyer, Serafima Gurevich, Stefanie Mueller, Hsiang-Ting Chen, and Patrick

Baudisch. 2015. Platener: Low-fidelity Fabrication of 3D Objects by Substituting 3D

Print with Laser-cut Plates (CHI ’15). 1799–1806.
Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing Huang, Bedrich Benes,

Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: Decompose-and-pack for 3D

Printing. ACM Trans. on Graph. (SIGGRAPH Asia) 34, 6 (2015). Article No. 213.
Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy J. Mitra, Helmut Pottmann,

and Mark Pauly. 2010. Paneling Architectural Freeform Surfaces. ACM Trans. on
Graph. (SIGGRAPH) 29, 4 (2010). Article No. 45.

Christer Ericson. 2004. Real-Time Collision Detection. CRC Press.

Cass Everitt. 2001. Interactive order-independent transparency. Tech. rep., NVIDIA

Corp.

Chi-Wing Fu, Chi-Fu Lai, Ying He, and Daniel Cohen-Or. 2010. K-set Tilable Surfaces.

ACM Trans. on Graph. (SIGGRAPH) 29, 4 (2010). Article No. 44.
Philipp Herholz, Wojciech Matusik, and Marc Alexa. 2015. Approximating Free-form

Geometry with Height Fields for Manufacturing. Computer Graphics Forum (Euro-
graphics) 34, 2 (2015), 239–251.

John Hertz, Richard G. Palmer, and Anders S. Krogh. 1991. Introduction to the Theory of
Neural Computation (1st ed.). Perseus Publishing.

Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. 2014. Approximate

Pyramidal Shape Decomposition. ACM Trans. on Graph. (SIGGRAPH Asia) 33, 6
(2014). Article No. 213.

Alec Jacobson. 2017. Generalized Matryoshka: Computational Design of Nesting

Objects. Computer Graphics Forum 36, 5 (2017), 27–35.

Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye,

Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: Strength to

weight 3D printed objects. ACM Trans. on Graph. (SIGGRAPH) 33, 4 (2014). Article
No. 97.

Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper:

partitioning models into 3D-printable parts. ACM Trans. on Graph. (SIGGRAPH
Asia) 31, 6 (2012). Article No. 129.

Sheng-Jie Luo, Yonghao Yue, Chun-Kai Huang, Yu-Huan Chung, Sei Imai, Tomoyuki

Nishita, and Bing-Yu Chen. 2015. Legolization: Optimizing LEGO Designs. ACM
Trans. on Graph. 34, 6, Article 222 (2015), 222:1–222:12 pages.

Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick

Baudisch. 2014. faBrickation: Fast 3D Printing of Functional Objects by Integrating

Construction Kit Building Blocks (CHI ’14). 3827–3834.
Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013.

Make it stand: balancing shapes for 3D fabrication. ACM Trans. on Graph. (SIG-
GRAPH) 32, 4 (2013). Article No. 81.

Mayank Singh and Scott Schaefer. 2010. Triangle surfaces with discrete equivalence

classes. ACM Trans. on Graph. (SIGGRAPH) 29, 4 (2010). Article No. 46.
Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Ligang

Liu. 2016. CofiFab: Coarse-to-Fine Fabrication of Large 3D Objects. ACM Trans. on
Graph. (SIGGRAPH) 35, 4 (2016). Article No. 45.

Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress

relief: improving structural strength of 3D printable objects. ACM Trans. on Graph.
(SIGGRAPH) 31, 4 (2012). Article No. 48.

Ultimaker ltd. 2017. Cura Software. https://ultimaker.com/en/products/cura-software

Juraj Vanek, JA Galicia, Bedrich Benes, R Měch, N Carr, Ondrej Stava, and GS Miller.

2014. PackMerger: A 3D Print Volume Optimizer. Computer Graphics Forum 33, 6

(2014), 322–332.

Lingfeng Wang and Emily Whiting. 2016. Buoyancy Optimization for Computational

Fabrication. Computer Graphics Forum (Eurographics) 35, 2 (2016), 49–58.
Weiming Wang, Tuanfeng Y Wang, Zhouwang Yang, Ligang Liu, Xin Tong, Weihua

Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. 2013. Cost-effective printing of

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

https://ultimaker.com/en/products/cura-software

3D Fabrication with Universal Building Blocks and Pyramidal Shells • 189:15

Vase-lion: t = 33.7%, c = 24.5%

Duck: t = 36.1%, c = 29.2%

Sphynx:
t = 31.4%, c = 26.2%

Toy train:
t = 53.7%, c = 50.9%

Horse: t = 56.1%, c = 55.7%

Bimba: t = 37.5%, c = 28.5%

Fandisk: t = 34.5%, c = 20.8%

Letters SIG: t = 34.6%, c = 24.5%

Fig. 23. A gallery of our decomposition results, showing the internal core (assembled from the universal building block set) and the pyramidal residual parts.
Estimated percentage reduction in total printing time and cost are marked next to each figure for reference (obtained from Table 1).

3D objects with skin-frame structures. ACM Trans. on Graph. (SIGGRAPH Asia) 32,
6 (2013). Article No. 177.

Eric W. Weisstein. 2016. Space-Filling Polyhedron. From MathWorld—A Wolfram Web

Resource. http://mathworld.wolfram.com/Space-FillingPolyhedron.html [Online;

accessed 13-December-2016].

Wikipedia. 2016. Prefabrication — Wikipedia, The Free Encyclopedia. https://en.

wikipedia.org/w/index.php?title=Prefabrication [Online; accessed 4-December-

2016].

Miaojun Yao, Zhili Chen, Linjie Luo, Rui Wang, and Huamin Wang. 2015. Level-set-

based Partitioning and Packing Optimization of a Printable Model. ACM Trans. on
Graph. (SIGGRAPH Asia) 34, 6 (2015). Article No. 214.

Xiaolong Zhang, Yang Xia, Jiaye Wang, Zhouwang Yang, Changhe Tu, and Wenping

Wang. 2015. Medial axis tree - an internal supporting structure for 3D printing.

Computer Aided Geometric Design 35 (2015), 149–162.

Xuejin Zhao, Yayue Pan, Chi Zhou, Yong Chen, and Charlie C. L. Wang. 2013. An

integrated CNC accumulation system for automatic building-around-inserts. Journal
of Manufacturing Processes 15 (2013), 432–443.

Henrik Zimmer, Florent Lafarge, Pierre Alliez, and Leif Kobbelt. 2014. Zometool shape

approximation. Graphical Models 76, 5 (2014), 390–401.

ACM Trans. Graph., Vol. 37, No. 6, Article 189. Publication date: November 2018.

http://mathworld.wolfram.com/Space-FillingPolyhedron.html
https://en.wikipedia.org/w/index.php?title=Prefabrication
https://en.wikipedia.org/w/index.php?title=Prefabrication

	Abstract
	1 Introduction
	2 Related work
	3 Problem setup and challenges
	4 Overview
	5 Algorithm
	5.1 Grid layout and maximal internal core
	5.2 Precomputation of deficit (waste) volume
	5.3 Iterative refinement of internal core
	5.4 Final decomposition
	5.5 Extension to 3D

	6 Results and evaluation
	7 Discussion, limitation, and future work
	References

